• <span id="inn7i"><optgroup id="inn7i"></optgroup></span>
    技術文章您現在的位置:首頁 > 技術文章 > ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

    ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

    更新時間:2023-04-22   點擊次數:1264次

    Azide Plus and Picolyl Azide 試劑

    Kinetic comparison of conventional azide
    (Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

    Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

    In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

    Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

    The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

    Selected References:
    1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

    2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
      Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

    3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

    4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

    5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

    6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

    7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

    訂購信息(靶點科技國內倉庫):


    靶點科技(北京)有限公司

    靶點科技(北京)有限公司

    地址:中關村生命科學園北清創意園2-4樓2層

    © 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:326371  站點地圖  技術支持:化工儀器網  管理登陸

    主站蜘蛛池模板: 91久久亚洲国产成人精品性色| 亚洲免费综合色在线视频| 国产一级特黄高清免费大片| 亚洲人和日本人jizz| 久久午夜夜伦鲁鲁片免费无码影视| 亚洲av无码专区国产乱码在线观看 | 亚洲中文字幕伊人久久无码| 亚洲AⅤ男人的天堂在线观看| 精品国产免费一区二区| 中文字幕乱码亚洲精品一区| 国产免费看JIZZ视频| 亚洲中文字幕一二三四区苍井空| 永久免费的网站在线观看| 亚洲日韩中文字幕无码一区| 日本久久久免费高清| 特级aa**毛片免费观看| 在线精品亚洲一区二区三区| 永久免费av无码入口国语片| 久久精品国产精品亚洲艾| **一级毛片免费完整视| 亚洲一卡2卡3卡4卡国产网站| 搡女人免费视频大全| 色多多免费视频观看区一区| 亚洲男人的天堂一区二区| 十八禁在线观看视频播放免费| 亚洲av色福利天堂| 国产桃色在线成免费视频| 亚洲国产精品无码第一区二区三区| 国产福利免费观看| 中文字幕在线视频免费观看| 亚洲黄色片在线观看| 全免费a级毛片免费看无码| 日韩毛片在线免费观看| 亚洲bt加勒比一区二区| 免费精品国偷自产在线在线| 色偷偷亚洲第一综合网| 久久精品国产亚洲AV网站 | 亚洲av日韩av综合| 全部免费国产潢色一级| 美女视频黄的免费视频网页| 亚洲情A成黄在线观看动漫软件|