• <span id="inn7i"><optgroup id="inn7i"></optgroup></span>
    技術文章您現(xiàn)在的位置:首頁 > 技術文章 > ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

    ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

    更新時間:2023-04-22   點擊次數(shù):1173次

    Azide Plus and Picolyl Azide 試劑

    Kinetic comparison of conventional azide
    (Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

    Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

    In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

    Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

    The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

    Selected References:
    1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

    2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
      Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

    3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

    4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

    5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

    6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

    7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

    訂購信息(靶點科技國內(nèi)倉庫):


    靶點科技(北京)有限公司

    靶點科技(北京)有限公司

    地址:中關村生命科學園北清創(chuàng)意園2-4樓2層

    © 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:305311  站點地圖  技術支持:化工儀器網(wǎng)  管理登陸

    主站蜘蛛池模板: 国产高清免费在线| 日本在线观看免费高清| 亚洲区小说区图片区QVOD| 无码免费午夜福利片在线| 中文字幕免费在线看线人动作大片 | 最近中文字幕mv免费高清在线| 日日摸夜夜添夜夜免费视频| 在线观看亚洲AV日韩AV| 久久精品国产亚洲av高清漫画| 丝袜熟女国偷自产中文字幕亚洲| 日韩激情无码免费毛片| 国产精品1024永久免费视频| 在线人成免费视频69国产| 一级毛片在线播放免费| 日韩亚洲翔田千里在线| 亚洲乱码在线卡一卡二卡新区| 亚洲福利视频网站| 亚洲国产高清人在线| 国产亚洲精品自在久久 | 免费播放国产性色生活片| 亚洲字幕AV一区二区三区四区| 777亚洲精品乱码久久久久久| 国产成人无码综合亚洲日韩| 亚洲女人被黑人巨大进入| 国产精品免费视频一区| 免费无码又爽又刺激聊天APP| 24小时免费看片| 84pao强力永久免费高清| 三年片在线观看免费大全电影| 国产一级a毛一级a看免费视频| 一级毛片免费视频网站| 猫咪免费人成网站在线观看入口| 免费亚洲视频在线观看| 国产成人精品亚洲一区| 男女超爽视频免费播放| 免费人成网站永久| 好吊色永久免费视频大全| 免费无码作爱视频| 日韩精品人妻系列无码专区免费| 99爱视频99爱在线观看免费| 67194国产精品免费观看|