• <span id="inn7i"><optgroup id="inn7i"></optgroup></span>
    技術文章您現在的位置:首頁 > 技術文章 > ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

    ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

    更新時間:2023-04-22   點擊次數:1264次

    Azide Plus and Picolyl Azide 試劑

    Kinetic comparison of conventional azide
    (Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

    Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

    In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

    Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

    The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

    Selected References:
    1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

    2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
      Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

    3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

    4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

    5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

    6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

    7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

    訂購信息(靶點科技國內倉庫):


    靶點科技(北京)有限公司

    靶點科技(北京)有限公司

    地址:中關村生命科學園北清創意園2-4樓2層

    © 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:326371  站點地圖  技術支持:化工儀器網  管理登陸

    主站蜘蛛池模板: 亚洲日本中文字幕区| 久久久久亚洲AV无码专区首JN| 免费a级毛片在线观看| 亚洲AV中文无码乱人伦| 相泽亚洲一区中文字幕| 亚洲国产精品无码久久久| 国产亚洲人成在线播放| 另类免费视频一区二区在线观看| 91免费国产自产地址入| 无码欧精品亚洲日韩一区夜夜嗨 | 国产91久久久久久久免费| 亚洲精品无码永久中文字幕| 亚洲区视频在线观看| CAOPORM国产精品视频免费| 91精品成人免费国产片| 亚洲国产成人综合| 欧美三级在线电影免费| 亚洲av无码成人黄网站在线观看 | 免费精品人在线二线三线区别| 亚洲国产激情在线一区| 搡女人免费免费视频观看| 成人免费无码大片a毛片软件| 亚洲精品无码Av人在线观看国产| 成人免费区一区二区三区 | 日韩免费视频一区二区| 大胆亚洲人体视频| 好猛好深好爽好硬免费视频| 国产无遮挡裸体免费视频| 国产成人亚洲精品| 免费一级毛片正在播放| 久久久久免费精品国产 | 精品韩国亚洲av无码不卡区| 亚洲一区精品伊人久久伊人| 亚洲日产乱码一二三区别| 69式互添免费视频| 亚洲av色香蕉一区二区三区蜜桃| 成人奭片免费观看| 国产久爱免费精品视频| 亚洲国产成人精品无码区在线秒播 | 亚洲精品国产精品乱码不卡| 国产精品久久久久久亚洲影视|