日韩精品无码免费视频_性色av无码免费一区二区三区_日韩精品无码一区二区三区免费_男人j进入女人j内部免费网站

技術(shù)文章您現(xiàn)在的位置:首頁 > 技術(shù)文章 > ClickChemistry點(diǎn)擊化學(xué)的應(yīng)用

ClickChemistry點(diǎn)擊化學(xué)的應(yīng)用

更新時(shí)間:2021-12-02   點(diǎn)擊次數(shù):4580次

Click Chemistry由K.Barry Sharpless、Hartmuth C.Kolb和M.G.Finn于2001年提出,用于描述快速選擇性反應(yīng)或以可預(yù)測(cè)的方式相互“點(diǎn)擊”以形成具有雜原子鏈(C-X-C)的生理穩(wěn)定產(chǎn)物的反應(yīng)。Click chemistry廣泛用于生物分子、表面、顆粒和有機(jī)化合物的改性,具有許多優(yōu)點(diǎn)1

應(yīng)用范圍廣泛;

模塊化性質(zhì);

在“小量”和“大量”反應(yīng)中均適用;

反應(yīng)條件溫和;

產(chǎn)品分離簡(jiǎn)單(幾乎不需要純化);

產(chǎn)率高,速度快;

無害副產(chǎn)品生成(遵循綠色化學(xué)的12項(xiàng)原則);

兼容性良好,尤其在生命系統(tǒng)中(允許生物分子的化學(xué)選擇性修飾,幾乎不受干擾)2。

在大約10種不同類型的點(diǎn)擊反應(yīng)中,有幾種是在各種生命科學(xué)應(yīng)用中使用最頻繁,從“簡(jiǎn)單”的生物分子標(biāo)記和檢測(cè)到先進(jìn)的CRISPER應(yīng)用。在此,我們重點(diǎn)介紹最重要的9種(最新)應(yīng)用:

生物分子標(biāo)記與檢測(cè)

*(固&液相)生物分子修飾/連接

構(gòu)建用于構(gòu)效關(guān)系分析的類似物庫

藥物先導(dǎo)化合物發(fā)現(xiàn)

藥物輸送

材料優(yōu)化(聚合物改性)

病毒研究探針

CRISPER sgRNA合成和靶基因標(biāo)記

新應(yīng)用,包括“點(diǎn)擊發(fā)布”

1.生物分子標(biāo)記與檢測(cè)

Click chemistry十分有用的功能之一是它能夠標(biāo)記和可視化生物分子,如脂質(zhì)3、肽4、聚糖5、糖蛋白6、核酸和合成分子7,8(如紫杉醇9),并且具有最小的生理干擾性(體外和體內(nèi))10。在進(jìn)行標(biāo)記的兩步反應(yīng)中,首先用雙正交點(diǎn)擊手柄(如炔烴或疊氮化物)標(biāo)記目標(biāo)生物分子(酶、代謝11,12或合成(請(qǐng)見圖1)9,13)。然后當(dāng)一個(gè)分子上有熒光或親和基團(tuán)的互補(bǔ)點(diǎn)擊手柄與目標(biāo)分子發(fā)生點(diǎn)擊反應(yīng)時(shí),就會(huì)發(fā)生檢測(cè)/可視化。

Click chemistry應(yīng)用生物分子標(biāo)記與檢測(cè)13

例如,在活體發(fā)育的斑馬魚中,表面聚糖以亞細(xì)胞分辨率被觀察到;依靠基因編碼的傳統(tǒng)分子成像方法通常無法看見14。在這項(xiàng)研究中,Bertozzi等人將代謝糖工程與多色檢測(cè)策略相結(jié)合,以揭示細(xì)胞表面表達(dá)、細(xì)胞內(nèi)運(yùn)輸和整個(gè)斑馬魚胚胎發(fā)生過程中聚糖組織分布的差異。類似的研究也在小鼠中進(jìn)行,以跟蹤移植細(xì)胞和測(cè)定細(xì)胞對(duì)肽的攝取情況,這有助于結(jié)構(gòu)-活性-通透性關(guān)系優(yōu)化研究15。兩個(gè)位點(diǎn)標(biāo)記生物分子(稱為雙位點(diǎn)標(biāo)記)有效的促進(jìn)了復(fù)雜生物系統(tǒng)的研究16,17,18,19,20。

2.(固相和液相)生物分子修飾/連接

肽、核苷酸、小分子、超分子等都可以通過固相或液相點(diǎn)擊化學(xué)進(jìn)行修飾,幾乎無需使用保護(hù)基團(tuán),也無需產(chǎn)品純化3,21,22??傮w來講,固相合成更快,且需要更少的后處理,但是每種方法都各有優(yōu)缺點(diǎn)23,24。

3. 類似物庫的建設(shè)

類似物庫可以通過點(diǎn)擊化學(xué)快速可靠地構(gòu)建,無需太多的合成工作,然后通過原位高通量篩選(HTS)來促進(jìn)分子結(jié)構(gòu)-活性關(guān)系(SAR)分析,這是優(yōu)化和發(fā)現(xiàn)生物活性分子所必需的。已經(jīng)有許多基于click(三唑)骨架的片段庫(聚焦組合)通過此方法被構(gòu)建出來25,例如Janus激酶抑制劑ruxolitinib衍生的三唑文庫,它被用來評(píng)估JAK3抑制劑24 。

4. 用于先導(dǎo)化合物發(fā)現(xiàn)的原位點(diǎn)擊化學(xué)

原位點(diǎn)擊化學(xué)是一種(動(dòng)力學(xué))靶點(diǎn)導(dǎo)向合成方法,Sharpless及其同事于2002年第一次提出并應(yīng)用于發(fā)現(xiàn)一種有效的乙酰膽堿酯酶抑制劑26。這種方法使用目標(biāo)生物分子本身作為支架,如果使其足夠接近并以適當(dāng)?shù)姆较蚍磻?yīng),則結(jié)合配體在其上進(jìn)行咔噠反應(yīng)。通過這種方式,可以從帶有互補(bǔ)反應(yīng)性官能團(tuán)的片段庫中篩選出能夠與目標(biāo)物形成穩(wěn)定絡(luò)合物的最佳配體27。無需事先對(duì)文庫成員進(jìn)行合成、純化和生化評(píng)估,即可快速且經(jīng)濟(jì)高效地篩選大量化合物28,29。

碳酸酐酶30、HIV蛋白酶31、幾丁酶32、核苷酸配體33、蛋白質(zhì)-蛋白質(zhì)相互作用(通過磺基點(diǎn)擊化學(xué))34、抗體樣蛋白質(zhì)捕獲劑35,36、轉(zhuǎn)錄因子37、通道38等的抑制劑也已被表征。

5. 藥物輸送

藥物進(jìn)入人體的控制給藥是有效藥物設(shè)計(jì)的一個(gè)重要方面。點(diǎn)擊化學(xué)已用于構(gòu)建聚合物納米和微粒藥物遞送系統(tǒng)(DDS),如聚合物膠束、脂質(zhì)體、膠囊、碳納米管等6,39。

6. 材料優(yōu)化(聚合物改性)

在材料制造領(lǐng)域,從線性聚合物和接枝聚合物到更復(fù)雜結(jié)構(gòu)(如星形聚合物、嵌段共聚物和樹狀聚合物)的合成,再到表面和界面的功能化40,點(diǎn)擊化學(xué)都產(chǎn)生了巨大的影響。例如,由于不產(chǎn)生小分子副產(chǎn)物,點(diǎn)擊化學(xué)可以最大限度地減少氣泡、空穴和不規(guī)則的形成,就像其他縮聚反應(yīng)一樣,這些氣泡、空穴和不規(guī)則會(huì)破壞新合成熱固性材料的外觀和性能41

CuAAC click chemistry還被用作一種高效、環(huán)保的交聯(lián)策略,以改善適用于涂料和粘合劑的水性聚合物的性能42(下圖2)。廣泛適用于聚氨酯(WPU)、聚酯分散體(PED)和聚丙烯酸酯乳液(PAE),該策略優(yōu)于其他可用的交聯(lián)策略(包括基于N-羥甲基丙烯酰胺(NMA)、懸垂乙酰乙酸基團(tuán)和可逆酮酰肼反應(yīng)的自交聯(lián)系統(tǒng))。Click交聯(lián)聚合物薄膜的機(jī)械強(qiáng)度、硬度和耐水/溶劑性能顯著提高,為工業(yè)涂料應(yīng)用中使用硬化劑提供了一種有可能降低成本的替代品。

Formation of click cross-linked waterborne polymers42

此外,各種(1D、2D、3D)生物材料(如水凝膠)的合成在組織工程43,44,45,46再生醫(yī)學(xué)47、藥物輸送48和基因治療領(lǐng)域49也越來越受到重視。

7. 病毒研究探針

在過去幾十年中50,與病毒相關(guān)的研究,包括病毒(蛋白質(zhì)、核酸或病毒粒子)追蹤51,52、抗病毒設(shè)計(jì)53,54、診斷55,56,57和基于病毒的傳遞系統(tǒng)58,59都使用了點(diǎn)擊化學(xué)。例如,通過將疊氮化物修飾的病毒粒子連接到由二苯并環(huán)辛烯(DBCO)衍生的量子點(diǎn)(QD),使用無銅點(diǎn)擊反應(yīng)來標(biāo)記包膜病毒(痘苗病毒(VACV)和A病毒(H9N2))。標(biāo)記效率達(dá)到80%以上,不干擾病毒的感染能力,熒光強(qiáng)度足以實(shí)現(xiàn)單個(gè)病毒粒子的跟蹤60。

8. CRISPER-sgRNA合成與靶基因標(biāo)記

Click chemistry現(xiàn)在可以在CRISPR工具箱中找到合成單個(gè)或多個(gè)單一導(dǎo)向RNA(sgRNA)的位置,繞過了與(更長(zhǎng))寡聚體長(zhǎng)度相關(guān)的現(xiàn)有合成限制,并縮短sgRNA設(shè)計(jì)和應(yīng)用之間的時(shí)間。

Click chemistry(被稱為“分裂和點(diǎn)擊”)不是一次性制造整個(gè)sgRNA,而是簡(jiǎn)單地連接兩個(gè)更?。ǜ菀缀铣桑┑钠危阂粋€(gè)按需制備的高純度~20-mer(crRNA)靶向序列和一個(gè)通用的可大規(guī)模生產(chǎn)的79-mer CRISPR內(nèi)切酶蛋白(Cas9)序列(tracrRNA)。結(jié)果發(fā)現(xiàn),帶有三唑鍵的~99-聚體能夠在體外和細(xì)胞內(nèi)有效地進(jìn)行Cas9介導(dǎo)的DNA切割,其靶向性與體外轉(zhuǎn)錄的sgRNA相當(dāng)61。

點(diǎn)擊化學(xué)也被用于標(biāo)記靶基因(稱為sgRNA點(diǎn)擊(sgR CLK))62。該技術(shù)包括在體外轉(zhuǎn)錄的CRISPR-sgRNA的3′端安裝點(diǎn)擊手柄,以形成疊氮化物標(biāo)記的三元復(fù)合物(由dCas9、sgRNA和靶基因組成)。然后通過與炔烴對(duì)應(yīng)物的點(diǎn)擊反應(yīng)實(shí)現(xiàn)該三元絡(luò)合物的功能化。

此外,點(diǎn)擊化學(xué)還用于設(shè)計(jì)一種柔性樹枝狀聚合物,用于傳遞鋅指、TALEs和CRISPR/dCas9平臺(tái)。使用該方法具有高轉(zhuǎn)染效率和較大的處理量63。

9. 包括“點(diǎn)擊發(fā)布”的新應(yīng)用

除了連接,點(diǎn)擊化學(xué)現(xiàn)在正在探索解封或“點(diǎn)擊釋放”應(yīng)用,這使得探針激活和治療傳遞的新策略成為可能64,65,66。例如,利用逆電子需求Diels-Alder-噠嗪消除反應(yīng)在體外和腫瘤小鼠中激發(fā)阿霉素從抗體-藥物結(jié)合物(ADC)中的快速釋放67。

點(diǎn)擊化學(xué)還被用于開發(fā)新的的微芯片和毛細(xì)管系統(tǒng)68,如微流控“點(diǎn)擊芯片”69和基于石墨烯的“點(diǎn)擊芯片”70。此外,“電點(diǎn)擊”接合方法已被用于固定酶(用于生物傳感器)、制備電化學(xué)免疫傳感器以及在空間和時(shí)間上控制蛋白質(zhì)接合71,72,73。

參考文獻(xiàn)
  1. Sharpless et al. (2001) Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40(11): 2004-2021.

  2. Liu, B., Kenry. (2019) Bio-orthogonal Click Chemistry for In Vivo Bioimaging. Trends in Chemistry 1(8): 763-778.

  3. Best, M. D., et al. (2019) Labeling of phosphatidylinositol lipid products in cells through metabolic engineering by using a clickable myo-inositol probe. Chembiochem 20(2): 172-180.

  4. Li, H., Aneja, R., Chaiken, I. (2013) Click Chemistry in Peptide-Based Drug Design. Molecules 18(8): 9797-9817.

  5. Prescher, J. A., Dube, D. H., Bertozzi, C. R. (2004) Chemical remodelling of cell surface in living animals. Nature 430: 873–877.

  6. Agnew B. et al. (2011) Metabolic Labeling and Click Chemistry Detection of Glycoprotein Markers of Mesenchymal Stem Cell Differentiation. In: Vemuri M., Chase L., Rao M. (eds) Mesenchymal Stem Cell Assays and Applications. Methods in Molecular Biology (Methods and Protocols), vol 698. Humana Press.

  7. Fantoni, N. F., El-Sagheer, A. H., Brown, T. (2021) A Hitchhiker’s Guide to Click Chemistry with Nucleic Acids. Chemical Reviews Article ASAP.

  8. Das, S. R., Paredes, E. (2010) Click Chemistry for Rapid Labeling and Ligation of RNA. ChemBioChem 12(1): 125-131.

  9. Lei, X. et al. (2013) A Bioorthogonal Ligation Enabled by Click Cycloaddition of o-Quinolinone Quinone Methide and Vinyl Thioether. J. Am. Chem. Soc. 135(13): 4996-4999.

  10. Takayama, Y., Kusamori, K., Nishikawa, M. (2019) Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 24(1):172.

  11. Salic, A., Mitchison, T. J. (2008) A Chemical Method for Fast and Sensitive Detection of DNA Synthesis in Vivo. Proc. Natl. Acad. Sci. USA 105: 2415-2420.

  12. Neef, A. B., Luedtke, N. W. (2011) Dynamic Metabolic Labeling of DNA in Vivo with Arabinosyl Nucleosides. Proc. Natl. Acad. Sci. USA 108: 20404-20409.

  13. Pickens, C. J. et al. (2018) Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide-Alkyne Cycloaddition. Bioconjugate Chem. 29(3): 686-701.

  14. Bertozzi, C. R. (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320(5876): 664-667.

  15. Partridge, A. W. et al. (2021) NanoClick: A High Throughput, Target-Agnostic Peptide Cell Permeability Assay. ACS Chem. Biol. 16(2): 293-309.

  16. Devaraj, N. K. et al. (2013) Fluorescent live-cell imaging of metabolically incorporated unnatural cyclopropene-mannosamine derivatives. ChemBioChem 14: 205-208.

  17. Lemke, E. A. (2014) Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew. Chem. Int. Ed. Engl 53(8): 2245–2249.

  18. Zhang, X. et al. (2015) Second generation TQ-ligation for cell organelle imaging. ACS Chem. Biol. 10: 1676-1683.

  19. Chin, J. W. et al. (2014) Concerted, rapid, quantitative, and site-specific dual labeling of proteins. J. Am. Chem. Soc. 136: 7785-7788.

  20. Xie, H. Y. (2017) Integrating two efficient and specific bioorthogonal ligation reactions with natural metabolic incorporation in one cell for virus dual labeling. Anal. Chem. 89(21): 11620-11627.

  21. Castro, V., Rodriguez, H., Albericio, F. (2016) CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. ACS Comb. Sci. 18(1): 1-14.

  22. Gehringer, M., Forster, M., Laufer, S. A. (2015) Solution-Phase Parallel Synthesis of Ruxolitinib-Derived Janus Kinase Inhibitors via Copper-Catalyzed Azide-Alkyne Cycloaddition. ACS Comb. Sci. 17(1): 5-10.

  23. Chang, Y-T. et al. (2011) Solid phase combinatorial synthesis of a xanthone library using click chemistry and its application to an embryonic stem cell probe. Chem. Commun. 47: 7488-7490.

  24. Meier, M. A. R. et al. (2019) Direct comparison of solution and solid phase synthesis of sequence-defined macromolecules. Polym. Chem. 10: 3859-3867.

  25. Zhan, P. et al. (2016) Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discovery Today 21(1): 118-132.

  26. Sharpless, K. B. et. al. (2002) Click Chemistry in Situ: Acetylcholinesterase as a Reaction Vessel for the Selective Assembly of a Femtomolar Inhibitor from an Array of Building Blocks. Angew. Chem., Int. Ed. 41, 1053– 1057.

  27. Oueis, E., Sabot, C., Renard, P.-Y. (2015) New insights into the kinetic target-guided synthesis of protein ligands. Chem. Commun. 51: 12158-12169.

  28. Hirsch, A. K. H. et al. (2018) Druggability Assessment of Targets Used in Kinetic Target-Guided Synthesis. J. Med. Chem. 61(21): 9395-9409.

  29. Kolb, H. C. et al. (2004) In Situ Click Chemistry: Enzyme Inhibitors Made to Their Own Specifications. J. Am. Chem. Soc. 126(40): 12809-12818.

  30. Kolb, H. C. et al. (2005) In Situ Click Chemistry: Enzyme-Generated Inhibitors of Carbon Anhydrase II. Angew. Chem. Int. Ed. 44(1): 116-120.

  31. Fokin, V. V. et al. (2006) Inhibitors of HIV‐1 Protease by Using In Situ Click Chemistry. Angew. Chem. Int. Ed. 45(9): 1435-1439.

  32. Hirose T, Sunazuka T, Omura S. (2010) Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 86(2):85-102.

  33. Dervan, P. B., Poulin-Kerstien, A. T. (2003) DNA-Templated Dimerization of Hairpin Polyamides. J. Am. Chem. Soc. 125(51): 15811-15821.

  34. Manetsch, R. (2011) Screening of protein-protein interaction modulators via sulfo-click kinetic target-guided synthesis. ACS Chemical Biology 6(7): 724–732.

  35. Heath, J. R. (2009) Iterative in situ click chemistry creates antibody-like protein-capture agents. Angew. Chem. Int. Ed. 48(27): 4944-4948.

  36. Heath, J. R. et al. (2013) In situ click chemistry: from small molecule discovery to synthetic antibodies. Integr. Biol. 5(1): 87-95.

  37. Deprez, B et al. (2010) Exploring Drug Target Flexibility Using in Situ Click Chemistry: Application to a Mycobacterial Transcriptional Regulator. ACS Chem. Biol. 5: 1007-1013.

  38. Fokin, V. V. et al. (2012) Generation of Candidate Ligands for Nicotinic Acetylcholine Receptors Via in Situ Click Chemistry with a Soluble Acetylcholine Binding Protein Template. J. Am. Chem. Soc. 134: 6732-6740.

  39. Fernandez-Megia, E. et al. (2012) Click Chemistry for Drug Delivery Nanosystems. Pharm. Res. 29: 1-34.

  40. List-Kratochvil, E. J. W. et al. (2020) Utilizing Diels-Alder “click” chemistry to functionalize the organic-organic interface of semiconducting polymers. J. Mater. Chem. C. 8: 3302.

  41. Serra, À. et al. (2020) The Use of Click-Type Reactions in the Preparation of Thermosets. Polymers 12(5):1084.

  42. Yang, J. et al. (2016) Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives. ACS Appl. Mater. Interfaces 8(27): 17499-17510.

  43. DeForest, C. A., Anseth, K. S. (2011) Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3(12): 925-931.

  44. Becker, M. L. et al. (2013) Postelectrospinning “click” modification of degradable amino acid-based poly (ester urea) nanofibers. Macromolecules, 46(24): 9515-9525

  45. Chen, H.-Y. et al. (2016) Multifaceted and route-controlled “click” reactions based on vapor-deposited coatings. Biomater. Sci. 4(2): 265-271.

  46. Xu, Z., Bratlie, K. M. (2018) Click Chemistry and Material Selection for in Situ Fabrication of Hydrogels in Tissue Engineering Applications. ACS Biomater. Sci. Eng. 4(7): 2276-2291.

  47. Shi, L. et al. (2021) Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomedical materials 16(2): 022003.

  48. Fu, Q. et al. (2017) Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis. Biomaterials 145: 138-153.

  49. Lin, C. et al. (2020) Bioreducible crosslinked cationic nanopolyplexes from clickable polyethylenimines enabling robust cancer gene therapy. Nanomedicine: Nanotechnology, Biology and Medicine 24: 102144.

  50. Ren, L. et al. (2018) Recent trends in click chemistry as a promising technology for virus-related research. Virus research 256: 21–28.

  51. de Haan, C. A. et al. (2012) Visualizing coronavirus RNA synthesis in time by using click chemistry. Journal of virology 86(10): 5808–5816.

  52. Kalveram B, Lihoradova O, Indran SV, Head JA, Ikegami T. (2013) Using click chemistry to measure the effect of viral infection on host-cell RNA synthesis. Journal of Visualized Experiments: Jove.

  53. Miura Y. et al. (2017) Design of glycopolymers carrying sialyl oligosaccharides for controlling the interaction with the influenza virus. Biomacromolecules 18(12):4385–4392.

  54. Wang, C., Zhu, W., Wang, B.Z. (2017) Dual-linker gold nanoparticles as adjuvanting carriers for m*lent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunological responses in vivo and in vitro. Int. J. Nanomed. 12: 4747-4762.

  55. Donolato, M. et al. (2015) Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. Scientific Reports 5: 16145.

  56. Samitier J. et al. (2015) Label-free electrochemical DNA sensor using "click"-functionalized PEDOT electrodes. Biosens. Bioelectron. 74:751-756.

  57. Carell, T. et al. (2020) Supersensitive Multifluorophore RNA-FISH for Early Virus Detection and Flow-FISH by Using Click Chemistry. ChemBioChem 21(15): 2214-2218.

  58. Iyer, K. S. et al. (2017) Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chemical science 8(4): 2923–2930.

  59. Chu, Y., Oum, Y. H., Carrico, I. S. (2016) Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction. Virology 487: 95–103.

  60. Xie, H. et al. (2012) A Mild and Reliable Method to Label Enveloped Virus with Quantum Dots by Copper-Free Click Chemistry. Analytical chemistry 84: 8364-8370.

  61. Brown, T. et al. (2019) An artificial triazole backbone linkage provides a split-and-click strategy to bioactive chemically modified CRISPR sgRNA. Nat Commun 10: 1610.

  62. Srivatsan, S. G. et al. (2020) Terminal Uridylyl Transferase Mediated Site-Directed Access to Clickable Chromatin Employing CRISPR-dCas9. J. Am. Chem. Soc. 142(32): 13954-13965.

  63. Iyer, K. S. et al. (2017) Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chemical science 8(4): 2923–2930.

  64. Carlson, J. C. T., Mikula, H., Weissleder, R. (2018) Unraveling Tetrazine-Triggered Bioorthogonal Elimination Enables Chemical Tools for Ultrafast Release and Universal Cleavage. J. Am. Chem. Soc. 140(10): 3603-3612.

  65. Royzen, M. et al. (2016) In Vivo Bioorthogonal Chemistry Enables Local Hydrogel and Systemic Pro-Drug To Treat Soft Tissue Sarcoma. ACS Cent. Sci. 2(7): 476-482.

  66. Peplow, M. (2019) Click chemistry targets antibody-drug conjugates for the clinic. Nature Biotechnology 37: 835-837.

  67. Robillard, M. S. et al. (2016) Triggered Drug Release from an Antibody-Drug Conjugate Using Fast “Click-to-Release” Chemistry in Mice. Bioconjugate Chem. 27(7): 1697-1706.

  68. Chen, C. et al. (2019) Click chemistry at the microscale. Analyst 144: 1492-1512.

  69. Reichert, D. E. et al. (2015) Development of a microfluidic “click chip” incorporating an immobilized Cu(I) catalyst. RSC Adv. 5: 6142-6150.

  70. Aran, K. et al. (2018) Graphene-based biosensor for on-chip detection of bio-orthogonally labeled proteins to identify the circulating biomarkers of aging during heterochronic parabiosis. Lab Chip 18: 3230-3238.

  71. Pingarrón, J. M. et al. (2020) Design of electrochemical immunosensors using electro-click chemistry. Application to the detection of IL-1β cytokine in saliva. Bioelectrochemistry 133: 107484.

  72. Ono, T. et al. (2019) Enzyme immobilization in completely packaged freestanding SU-8 microfluidic channel by electro click chemistry for compact thermal biosensor. Process Biochemistry 79: 57-64.

  73. Shi, X-W. et al. (2013) Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’ chemistry. Biofabrication 5(4): 041001.

 

靶點(diǎn)科技(北京)有限公司

靶點(diǎn)科技(北京)有限公司

地址:中關(guān)村生命科學(xué)園北清創(chuàng)意園2-4樓2層

© 2025 版權(quán)所有:靶點(diǎn)科技(北京)有限公司  備案號(hào):京ICP備18027329號(hào)-2  總訪問量:344305  站點(diǎn)地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

日韩精品无码免费视频_性色av无码免费一区二区三区_日韩精品无码一区二区三区免费_男人j进入女人j内部免费网站

  • <span id="inn7i"><optgroup id="inn7i"></optgroup></span>
    欧美日韩国产高清一区二区| 亚洲色图另类专区| 在线播放视频一区| 91精品国产手机| 亚洲一区二区三区影院| www.在线欧美| 国产精品区一区二区三区| 国产老妇另类xxxxx| 久久综合九色综合97婷婷女人| 午夜精品成人在线| 欧美精品 国产精品| 午夜精品视频一区| 日韩一区二区三区在线观看| 奇米精品一区二区三区在线观看一 | 日韩丝袜情趣美女图片| 日韩福利电影在线观看| 欧美三级电影一区| 色诱视频网站一区| 亚洲综合自拍偷拍| 欧美顶级少妇做爰| 亚洲色图.com| 欧美片在线播放| 青青草视频一区| 亚洲色图制服丝袜| 精品国产91久久久久久久妲己| jizzjizzjizz欧美| 卡一卡二国产精品| 国产精品久久久久久妇女6080| 91福利国产精品| 麻豆精品新av中文字幕| fc2成人免费人成在线观看播放| 一区二区高清视频在线观看| 欧美日韩另类一区| 国产精品国产三级国产普通话蜜臀 | 顶级嫩模精品视频在线看| 精品国产乱码久久久久久图片 | 日韩欧美中文一区二区| 国产精品毛片大码女人| 欧美午夜精品免费| 国产剧情一区二区| 一区二区不卡在线视频 午夜欧美不卡在| 亚洲资源中文字幕| 日韩视频在线一区二区| 97久久超碰国产精品| 日产国产欧美视频一区精品| 国产精品国产三级国产a | 中文字幕亚洲欧美在线不卡| 欧美四级电影网| 成人午夜av电影| 懂色av中文一区二区三区| 国内久久精品视频| 国产露脸91国语对白| 国产乱码精品1区2区3区| 狠狠色丁香久久婷婷综合_中| 国产精品久久久久aaaa樱花| 欧美一区二区三区电影| 欧洲精品一区二区三区在线观看| 国内久久婷婷综合| 日韩va亚洲va欧美va久久| 亚洲国产精品99久久久久久久久| 欧美一级免费观看| 91蜜桃在线免费视频| 国产成人亚洲精品狼色在线| 欧洲一区在线电影| 92精品国产成人观看免费| 国产裸体歌舞团一区二区| 美女免费视频一区| 午夜在线成人av| 蜜臀久久99精品久久久画质超高清 | 国产精品久久久久久久久免费相片| 91亚洲精品久久久蜜桃| 国产91丝袜在线观看| 狠狠色丁香婷婷综合| 日韩中文字幕区一区有砖一区| 亚洲精品伦理在线| 亚洲人成亚洲人成在线观看图片 | 国产精品99久久久久久有的能看| 日韩av电影免费观看高清完整版 | 美女诱惑一区二区| 午夜伦理一区二区| 香蕉影视欧美成人| 99免费精品在线| 日本不卡不码高清免费观看| 成人18视频在线播放| 欧美国产日韩a欧美在线观看| 色综合中文综合网| 国产偷v国产偷v亚洲高清 | 欧美日韩在线三区| 欧美喷潮久久久xxxxx| 亚洲精品一区二区三区福利| 久久久九九九九| 亚洲最新视频在线播放| 激情综合一区二区三区| 99精品视频一区二区| 欧美成人激情免费网| 亚洲激情图片一区| 国产成人免费在线观看| 91精品在线麻豆| 中文字幕一区二区三区在线播放| 日韩av二区在线播放| 91啪九色porn原创视频在线观看| 日韩精品一区二区三区中文精品| 亚洲视频一二三| 国产精品一区在线| 在线成人小视频| 蜜桃久久精品一区二区| 色婷婷一区二区三区四区| 久久天天做天天爱综合色| 午夜精品成人在线| 色婷婷综合中文久久一本| 欧美激情一区二区三区全黄| 久久精品二区亚洲w码| 欧美巨大另类极品videosbest| 综合精品久久久| 从欧美一区二区三区| 久久午夜免费电影| 久久aⅴ国产欧美74aaa| 欧美精品第1页| 亚洲国产aⅴ天堂久久| 色94色欧美sute亚洲线路一ni| 日本一区二区三区视频视频| 国产麻豆成人精品| 日韩精品一区国产麻豆| 久久国产精品99久久人人澡| 欧美年轻男男videosbes| 亚洲成av人片www| 欧美日韩国产一区| 午夜久久久久久久久 | 成人激情电影免费在线观看| 久久午夜免费电影| 国产尤物一区二区在线| 久久久综合精品| 成人性视频网站| 国产精品色哟哟| 99re免费视频精品全部| 一区二区三区影院| 欧美日韩综合一区| 免费欧美在线视频| 久久综合狠狠综合| 成人av电影免费观看| 亚洲午夜免费电影| 日韩一区二区电影| 国产三级精品三级在线专区| 国产电影一区二区三区| 国产精品毛片大码女人| 久久午夜色播影院免费高清| 久久av老司机精品网站导航| 日韩视频免费直播| 国产一区二区三区免费看| 中文字幕成人av| 一本大道久久a久久综合| 日精品一区二区三区| 精品成a人在线观看| 粉嫩一区二区三区在线看| 国产精品美日韩| 欧美人成免费网站| 国产凹凸在线观看一区二区| 亚洲精品菠萝久久久久久久| 日韩情涩欧美日韩视频| 不卡一区在线观看| 日韩高清不卡一区二区三区| 久久久综合视频| 91成人看片片| 国产乱码精品一区二区三| 亚洲激情成人在线| ww亚洲ww在线观看国产| 欧美性生活久久| 成人免费视频视频| 日本不卡高清视频| 亚洲欧美日韩电影| 偷拍与自拍一区| 久久久精品综合| 91麻豆精品国产91久久久使用方法 | 91在线观看一区二区| 日韩在线一二三区| 最新高清无码专区| 精品国产3级a| 91精品国产综合久久婷婷香蕉| 成+人+亚洲+综合天堂| 男女激情视频一区| 亚洲一区在线观看免费观看电影高清| 久久伊99综合婷婷久久伊| 欧美日韩成人在线| 欧美一a一片一级一片| 成人性生交大片免费看在线播放| 色综合久久88色综合天天免费| 国产精品国产三级国产普通话蜜臀 | 91精品久久久久久久99蜜桃 | 椎名由奈av一区二区三区| 日韩欧美123| 欧美精品在线一区二区三区| 色综合天天性综合| 不卡电影免费在线播放一区| 国产一区二区视频在线| 免费看欧美女人艹b| 亚洲国产三级在线| 亚洲一区二区三区四区在线| 亚洲天堂福利av| 国产精品黄色在线观看| 国产女主播一区|